|
Нет описания ! Получить ссылку |
Amica
Автор: Пьетро Масканьи
Год издания:
Ars Islamica. В честь Станислава Михайловича Прозорова
Автор: Сборник статей
Год издания:
В научный сборник, посвященный выдающемуся российскому исламоведу, одному из основоположников Ленинградской / Санкт-Петербургской школы российского академического исламоведения Станиславу Михайловичу Прозорову, включены статьи российских и зарубежных исследователей, подавляющее большинство которых являются единомышленниками, коллегами и учениками С.М. Прозорова. В центре внимания авторов статей – различные области академического исламоведения: историография и источниковедение ислама, суфизм, методы и методики исламоведческих исследований, текстология, переводы исламских источников, впервые публикуемые на русском языке, исламское образование в России, изучение выдающихся проявлений исламской культуры в мусульманском мире, включая территории бывшей Российской империи и СССР (Центральная Азия, Северный Кавказ, Урал и Поволжье).
ET•TOSA•AMICA•MEA•EST
Автор: Андрей Собакин
Год издания:
Засидевшись ночью у компьтера, Олег получает странный мейл от незнакомой девушки, которую зовут Эмилия и которая дружит с Тосой. И пусть Олега и Эмилию разделяют тысячи километров и две тысячи лет – для Тосы это не проблема, и она может им помочь встретиться… Вот только кто такая Тоса, и почему она вызвалась помочь?..
Dynamical Systems Method and Applications. Theoretical Developments and Numerical Examples
Автор: Ramm Alexander G.
Год издания:
Demonstrates the application of DSM to solve a broad range of operator equations The dynamical systems method (DSM) is a powerful computational method for solving operator equations. With this book as their guide, readers will master the application of DSM to solve a variety of linear and nonlinear problems as well as ill-posed and well-posed problems. The authors offer a clear, step-by-step, systematic development of DSM that enables readers to grasp the method's underlying logic and its numerous applications. Dynamical Systems Method and Applications begins with a general introduction and then sets forth the scope of DSM in Part One. Part Two introduces the discrepancy principle, and Part Three offers examples of numerical applications of DSM to solve a broad range of problems in science and engineering. Additional featured topics include: General nonlinear operator equations Operators satisfying a spectral assumption Newton-type methods without inversion of the derivative Numerical problems arising in applications Stable numerical differentiation Stable solution to ill-conditioned linear algebraic systems Throughout the chapters, the authors employ the use of figures and tables to help readers grasp and apply new concepts. Numerical examples offer original theoretical results based on the solution of practical problems involving ill-conditioned linear algebraic systems, and stable differentiation of noisy data. Written by internationally recognized authorities on the topic, Dynamical Systems Method and Applications is an excellent book for courses on numerical analysis, dynamical systems, operator theory, and applied mathematics at the graduate level. The book also serves as a valuable resource for professionals in the fields of mathematics, physics, and engineering.
Non-Smooth Deterministic or Stochastic Discrete Dynamical Systems
Автор: Jerome Bastien
Год издания:
This book contains theoretical and application-oriented methods to treat models of dynamical systems involving non-smooth nonlinearities. The theoretical approach that has been retained and underlined in this work is associated with differential inclusions of mainly finite dimensional dynamical systems and the introduction of maximal monotone operators (graphs) in order to describe models of impact or friction. The authors of this book master the mathematical, numerical and modeling tools in a particular way so that they can propose all aspects of the approach, in both a deterministic and stochastic context, in order to describe real stresses exerted on physical systems. Such tools are very powerful for providing reference numerical approximations of the models. Such an approach is still not very popular nevertheless, even though it could be very useful for many models of numerous fields (e.g. mechanics, vibrations, etc.). This book is especially suited for people both in research and industry interested in the modeling and numerical simulation of discrete mechanical systems with friction or impact phenomena occurring in the presence of classical (linear elastic) or non-classical constitutive laws (delay, memory effects, etc.). It aims to close the gap between highly specialized mathematical literature and engineering applications, as well as to also give tools in the framework of non-smooth stochastic differential systems: thus, applications involving stochastic excitations (earthquakes, road surfaces, wind models etc.) are considered. Contents 1. Some Simple Examples. 2. Theoretical Deterministic Context. 3. Stochastic Theoretical Context. 4. Riemannian Theoretical Context. 5. Systems with Friction. 6. Impact Systems. 7. Applications–Extensions. About the Authors Jerome Bastien is Assistant Professor at the University Lyon 1 (Centre de recherche et d'Innovation sur le sport) in France. Frederic Bernardin is a Research Engineer at Departement Laboratoire de Clermont-Ferrand (DLCF), Centre d'Etudes Techniques de l'Equipement (CETE), Lyon, France. Claude-Henri Lamarque is Head of Laboratoire Geomateriaux et Genie Civil (LGCB) and Professor at Ecole des Travaux Publics de l'Etat (ENTPE), Vaulx-en-Velin, France.
Чтобы скачать книгу, отключите блокировку рекламы. Спасибо!