Скачать книгу - Bayesian Biostatistics



The growth of biostatistics has been phenomenal in recent years and has been marked by considerable technical innovation in both methodology and computational practicality. One area that has experienced significant growth is Bayesian methods. The growing use of Bayesian methodology has taken place partly due to an increasing number of practitioners valuing the Bayesian paradigm as matching that of scientific discovery. In addition, computational advances have allowed for more complex models to be fitted routinely to realistic data sets. Through examples, exercises and a combination of introductory and more advanced chapters, this book provides an invaluable understanding of the complex world of biomedical statistics illustrated via a diverse range of applications taken from epidemiology, exploratory clinical studies, health promotion studies, image analysis and clinical trials. Key Features: Provides an authoritative account of Bayesian methodology, from its most basic elements to its practical implementation, with an emphasis on healthcare techniques. Contains introductory explanations of Bayesian principles common to all areas of application. Presents clear and concise examples in biostatistics applications such as clinical trials, longitudinal studies, bioassay, survival, image analysis and bioinformatics. Illustrated throughout with examples using software including WinBUGS, OpenBUGS, SAS and various dedicated R programs. Highlights the differences between the Bayesian and classical approaches. Supported by an accompanying website hosting free software and case study guides. Bayesian Biostatistics introduces the reader smoothly into the Bayesian statistical methods with chapters that gradually increase in level of complexity. Master students in biostatistics, applied statisticians and all researchers with a good background in classical statistics who have interest in Bayesian methods will find this book useful.


Bayesian Risk Management. A Guide to Model Risk and Sequential Learning in Financial Markets Bayesian Risk Management. A Guide to Model Risk and Sequential Learning in Financial Markets

Автор: Matt Sekerke

Год издания: 

A risk measurement and management framework that takes model risk seriously Most financial risk models assume the future will look like the past, but effective risk management depends on identifying fundamental changes in the marketplace as they occur. Bayesian Risk Management details a more flexible approach to risk management, and provides tools to measure financial risk in a dynamic market environment. This book opens discussion about uncertainty in model parameters, model specifications, and model-driven forecasts in a way that standard statistical risk measurement does not. And unlike current machine learning-based methods, the framework presented here allows you to measure risk in a fully-Bayesian setting without losing the structure afforded by parametric risk and asset-pricing models. Recognize the assumptions embodied in classical statistics Quantify model risk along multiple dimensions without backtesting Model time series without assuming stationarity Estimate state-space time series models online with simulation methods Uncover uncertainty in workhorse risk and asset-pricing models Embed Bayesian thinking about risk within a complex organization Ignoring uncertainty in risk modeling creates an illusion of mastery and fosters erroneous decision-making. Firms who ignore the many dimensions of model risk measure too little risk, and end up taking on too much. Bayesian Risk Management provides a roadmap to better risk management through more circumspect measurement, with comprehensive treatment of model uncertainty.


Biostatistics For Dummies Biostatistics For Dummies

Автор: John Pezzullo

Год издания: 

Score your highest in biostatistics Biostatistics is a required course for students of medicine, epidemiology, forestry, agriculture, bioinformatics, and public health. In years past this course has been mainly a graduate-level requirement; however its application is growing and course offerings at the undergraduate level are exploding. Biostatistics For Dummies is an excellent resource for those taking a course, as well as for those in need of a handy reference to this complex material. Biostatisticians—analysts of biological data—are charged with finding answers to some of the world's most pressing health questions: how safe or effective are drugs hitting the market today? What causes autism? What are the risk factors for cardiovascular disease? Are those risk factors different for men and women or different ethnic groups? Biostatistics For Dummies examines these and other questions associated with the study of biostatistics. Provides plain-English explanations of techniques and clinical examples to help Serves as an excellent course supplement for those struggling with the complexities of the biostatistics Tracks to a typical, introductory biostatistics course Biostatistics For Dummies is an excellent resource for anyone looking to succeed in this difficult course.


Clinical Trial Design. Bayesian and Frequentist Adaptive Methods Clinical Trial Design. Bayesian and Frequentist Adaptive Methods

Автор: Guosheng Yin

Год издания: 

A balanced treatment of the theories, methodologies, and design issues involved in clinical trials using statistical methods There has been enormous interest and development in Bayesian adaptive designs, especially for early phases of clinical trials. However, for phase III trials, frequentist methods still play a dominant role through controlling type I and type II errors in the hypothesis testing framework. From practical perspectives, Clinical Trial Design: Bayesian and Frequentist Adaptive Methods provides comprehensive coverage of both Bayesian and frequentist approaches to all phases of clinical trial design. Before underpinning various adaptive methods, the book establishes an overview of the fundamentals of clinical trials as well as a comparison of Bayesian and frequentist statistics. Recognizing that clinical trial design is one of the most important and useful skills in the pharmaceutical industry, this book provides detailed discussions on a variety of statistical designs, their properties, and operating characteristics for phase I, II, and III clinical trials as well as an introduction to phase IV trials. Many practical issues and challenges arising in clinical trials are addressed. Additional topics of coverage include: Risk and benefit analysis for toxicity and efficacy trade-offs Bayesian predictive probability trial monitoring Bayesian adaptive randomization Late onset toxicity and response Dose finding in drug combination trials Targeted therapy designs The author utilizes cutting-edge clinical trial designs and statistical methods that have been employed at the world's leading medical centers as well as in the pharmaceutical industry. The software used throughout the book is freely available on the book's related website, equipping readers with the necessary tools for designing clinical trials. Clinical Trial Design is an excellent book for courses on the topic at the graduate level. The book also serves as a valuable reference for statisticians and biostatisticians in the pharmaceutical industry as well as for researchers and practitioners who design, conduct, and monitor clinical trials in their everyday work.


Coherent Stress Testing. A Bayesian Approach to the Analysis of Financial Stress Coherent Stress Testing. A Bayesian Approach to the Analysis of Financial Stress

Автор: Riccardo Rebonato

Год издания: 

In Coherent Stress Testing: A Bayesian Approach, industry expert Riccardo Rebonato presents a groundbreaking new approach to this important but often undervalued part of the risk management toolkit. Based on the author's extensive work, research and presentations in the area, the book fills a gap in quantitative risk management by introducing a new and very intuitively appealing approach to stress testing based on expert judgement and Bayesian networks. It constitutes a radical departure from the traditional statistical methodologies based on Economic Capital or Extreme-Value-Theory approaches. The book is split into four parts. Part I looks at stress testing and at its role in modern risk management. It discusses the distinctions between risk and uncertainty, the different types of probability that are used in risk management today and for which tasks they are best used. Stress testing is positioned as a bridge between the statistical areas where VaR can be effective and the domain of total Keynesian uncertainty. Part II lays down the quantitative foundations for the concepts described in the rest of the book. Part III takes readers through the application of the tools discussed in part II, and introduces two different systematic approaches to obtaining a coherent stress testing output that can satisfy the needs of industry users and regulators. In part IV the author addresses more practical questions such as embedding the suggestions of the book into a viable governance structure.


Bayesian Statistics. An Introduction Bayesian Statistics. An Introduction

Автор: Peter Lee M.

Год издания: 

Bayesian Statistics is the school of thought that combines prior beliefs with the likelihood of a hypothesis to arrive at posterior beliefs. The first edition of Peter Lee’s book appeared in 1989, but the subject has moved ever onwards, with increasing emphasis on Monte Carlo based techniques. This new fourth edition looks at recent techniques such as variational methods, Bayesian importance sampling, approximate Bayesian computation and Reversible Jump Markov Chain Monte Carlo (RJMCMC), providing a concise account of the way in which the Bayesian approach to statistics develops as well as how it contrasts with the conventional approach. The theory is built up step by step, and important notions such as sufficiency are brought out of a discussion of the salient features of specific examples. This edition: Includes expanded coverage of Gibbs sampling, including more numerical examples and treatments of OpenBUGS, R2WinBUGS and R2OpenBUGS. Presents significant new material on recent techniques such as Bayesian importance sampling, variational Bayes, Approximate Bayesian Computation (ABC) and Reversible Jump Markov Chain Monte Carlo (RJMCMC). Provides extensive examples throughout the book to complement the theory presented. Accompanied by a supporting website featuring new material and solutions. More and more students are realizing that they need to learn Bayesian statistics to meet their academic and professional goals. This book is best suited for use as a main text in courses on Bayesian statistics for third and fourth year undergraduates and postgraduate students.