Скачать книгу - Discrete q-Distributions



A self-contained study of the various applications and developments of discrete distribution theory Written by a well-known researcher in the field, Discrete q-Distributions features an organized presentation of discrete q-distributions based on the stochastic model of a sequence of independent Bernoulli trials. In an effort to keep the book self-contained, the author covers all of the necessary basic q-sequences and q-functions. The book begins with an introduction of the notions of a q-power, a q-factorial, and a q-binomial coefficient and proceeds to discuss the basic q-combinatorics and q-hypergeometric series. Next, the book addresses discrete q-distributions with success probability at a trial varying geometrically, with rate q, either with the number of previous trials or with the number of previous successes. Further, the book examines two interesting stochastic models with success probability at any trial varying geometrically both with the number of trials and the number of successes and presents local and global limit theorems. Discrete q-Distributions also features: Discussions of the definitions and theorems that highlight key concepts and results Several worked examples that illustrate the applications of the presented theory Numerous exercises at varying levels of difficulty that consolidate the concepts and results as well as complement, extend, or generalize the results Detailed hints and answers to all the exercises in an appendix to help less-experienced readers gain a better understanding of the content An up-to-date bibliography that includes the latest trends and advances in the field and provides a collective source for further research An Instructor’s Solutions Manual available on a companion website A unique reference for researchers and practitioners in statistics, mathematics, physics, engineering, and other applied sciences, Discrete q-Distributions is also an appropriate textbook for graduate-level courses in discrete statistical distributions, distribution theory, and combinatorics.


Network and Discrete Location. Models, Algorithms, and Applications Network and Discrete Location. Models, Algorithms, and Applications

Автор: Mark Daskin S.

Год издания: 

Praise for the First Edition This book is refreshing to read since it takes an important topic… and presents it in a clear and concise manner by using examples that include visual presentations of the problem, solution methods, and results along with an explanation of the mathematical and procedural steps required to model the problem and work through to a solution.” —Journal of Classification Thoroughly updated and revised, Network and Discrete Location: Models, Algorithms, and Applications, Second Edition remains the go-to guide on facility location modeling. The book offers a unique introduction to methodological tools for solving location models and provides insight into when each approach is useful and what information can be obtained. The Second Edition focuses on real-world extensions of the basic models used in locating facilities, including production and distribution systems, location-inventory models, and defender-interdictor problems. A unique taxonomy of location problems and models is also presented. Featuring examples using the author’s own software—SITATION, MOD-DIST, and MENU-OKF—as well as Microsoft Office® Excel®, the book provides: • A theoretical and applied perspective on location models and algorithms • An intuitive presentation of the uses and limits of modeling techniques • An introduction to integrated location-inventory modeling and defender-interdictor models for the design of reliable facility location systems • A full range of exercises to equip readers with an understanding of the basic facility location model types Network and Discrete Location: Models, Algorithms, and Applications, Second Edition is an essential resource for practitioners in applied and discrete mathematics, operations research, industrial engineering, and quantitative geography. The book is also a useful textbook for upper-level undergraduate, graduate, and MBA courses.


Discrete Event Systems in Dioid Algebra and Conventional Algebra Discrete Event Systems in Dioid Algebra and Conventional Algebra

Автор: Philippe Declerck

Год издания: 

This book concerns the use of dioid algebra as (max, +) algebra to treat the synchronization of tasks expressed by the maximum of the ends of the tasks conditioning the beginning of another task – a criterion of linear programming. A classical example is the departure time of a train which should wait for the arrival of other trains in order to allow for the changeover of passengers. The content focuses on the modeling of a class of dynamic systems usually called “discrete event systems” where the timing of the events is crucial. Events are viewed as sudden changes in a process which is, essentially, a man-made system, such as automated manufacturing lines or transportation systems. Its main advantage is its formalism which allows us to clearly describe complex notions and the possibilities to transpose theoretical results between dioids and practical applications.


Discrete-time Asset Pricing Models in Applied Stochastic Finance Discrete-time Asset Pricing Models in Applied Stochastic Finance

Автор: P. C. G. Vassiliou

Год издания: 

Stochastic finance and financial engineering have been rapidly expanding fields of science over the past four decades, mainly due to the success of sophisticated quantitative methodologies in helping professionals manage financial risks. In recent years, we have witnessed a tremendous acceleration in research efforts aimed at better comprehending, modeling and hedging this kind of risk. These two volumes aim to provide a foundation course on applied stochastic finance. They are designed for three groups of readers: firstly, students of various backgrounds seeking a core knowledge on the subject of stochastic finance; secondly financial analysts and practitioners in the investment, banking and insurance industries; and finally other professionals who are interested in learning advanced mathematical and stochastic methods, which are basic knowledge in many areas, through finance. Volume 1 starts with the introduction of the basic financial instruments and the fundamental principles of financial modeling and arbitrage valuation of derivatives. Next, we use the discrete-time binomial model to introduce all relevant concepts. The mathematical simplicity of the binomial model also provides us with the opportunity to introduce and discuss in depth concepts such as conditional expectations and martingales in discrete time. However, we do not expand beyond the needs of the stochastic finance framework. Numerous examples, each highlighted and isolated from the text for easy reference and identification, are included. The book concludes with the use of the binomial model to introduce interest rate models and the use of the Markov chain model to introduce credit risk. This volume is designed in such a way that, among other uses, makes it useful as an undergraduate course.


Discrete Stochastic Processes and Optimal Filtering Discrete Stochastic Processes and Optimal Filtering

Автор: Ceschi Roger

Год издания: 

Optimal filtering applied to stationary and non-stationary signals provides the most efficient means of dealing with problems arising from the extraction of noise signals. Moreover, it is a fundamental feature in a range of applications, such as in navigation in aerospace and aeronautics, filter processing in the telecommunications industry, etc. This book provides a comprehensive overview of this area, discussing random and Gaussian vectors, outlining the results necessary for the creation of Wiener and adaptive filters used for stationary signals, as well as examining Kalman filters which are used in relation to non-stationary signals. Exercises with solutions feature in each chapter to demonstrate the practical application of these ideas using MATLAB.


Understanding the Discrete Element Method. Simulation of Non-Spherical Particles for Granular and Multi-body Systems Understanding the Discrete Element Method. Simulation of Non-Spherical Particles for Granular and Multi-body Systems

Автор: Chen Jian

Год издания: 

Gives readers a more thorough understanding of DEM and equips researchers for independent work and an ability to judge methods related to simulation of polygonal particles Introduces DEM from the fundamental concepts (theoretical mechanics and solidstate physics), with 2D and 3D simulation methods for polygonal particles Provides the fundamentals of coding discrete element method (DEM) requiring little advance knowledge of granular matter or numerical simulation Highlights the numerical tricks and pitfalls that are usually only realized after years of experience, with relevant simple experiments as applications Presents a logical approach starting withthe mechanical and physical bases,followed by a description of the techniques and finally their applications Written by a key author presenting ideas on how to model the dynamics of angular particles using polygons and polyhedral Accompanying website includes MATLAB-Programs providing the simulation code for two-dimensional polygons Recommended for researchers and graduate students who deal with particle models in areas such as fluid dynamics, multi-body engineering, finite-element methods, the geosciences, and multi-scale physics.