Biorefinery Co-Products
Автор: Группа авторов
Год издания:
In order to successfully compete as a sustainable energy source, the value of biomass must be maximized through the production of valuable co-products in the biorefinery. Specialty chemicals and other biobased products can be extracted from biomass prior to or after the conversion process, thus increasing the overall profitability and sustainability of the biorefinery. Biorefinery Co-Products highlights various co-products that are present in biomass prior to and after processing, describes strategies for their extraction , and presents examples of bioenergy feedstocks that contain high value products. Topics covered include: Bioactive compounds from woody biomass Phytochemicals from sugar cane, citrus waste and algae Valuable products from corn and other oil seed crops Proteins from forages Enhancing the value of existing biomass processing streams Aimed at academic researchers, professionals and specialists in the bioenergy industry, Biorefinery Co-Products is an essential text for all scientists and engineers working on the efficient separation, purification and manufacture of value-added biorefinery co-products. For more information on the Wiley Series in Renewable resources, visit www.wiley.com/go/rrs
Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers
Автор: Группа авторов
Год издания:
Sets the stage for large-scale production of biofuels and bio-based chemicals In response to diminishing supplies as well as the environmental hazards posed by fossil fuels and petrochemicals, interest and demand for green, sustainable biofuels and bio-based chemicals are soaring. Biomass may be the solution. It is an abundant carbon-neutral renewable feedstock that can be used for the production of fuels and chemicals. Currently, biorefineries use corn, soybeans, and sugarcane for bioethanol and biodiesel production; however, there are many challenges facing biorefineries, preventing biomass from reaching its full potential. This book provides a comprehensive review of bioprocessing technologies that use lignocellulosic biomass for the production of biofuels, biochemicals, and biopolymers. It begins with an overview of integrated biorefineries. Next, it covers: Biomass feedstocks, including sugar, starch, oil, and energy crops as well as microalgae Pretreatment technologies for lignocellulosic biomass Hydrolytic enzymes used in biorefineries for the hydrolysis of starch and lignocelluloses Bioconversion technologies for current and future biofuels such as ethanol, biodiesel, butanol, hydrogen, and biogas Specialty chemicals, building block chemicals, and biopolymers produced via fermentation Phytochemicals and functional food ingredients extracted from plant materials All the chapters have been written and edited by leading experts in bioprocessing and biorefining technologies. Contributions are based on a thorough review of the literature as well as the authors' firsthand experience developing and working with bioprocessing technologies. By setting forth the current state of the technology and pointing to promising new directions in research, Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers will enable readers to move towards large-scale, sustainable, and economical production of biofuels and bio-based chemicals.