Найти книгу: "Probabilistic Databases"


Probabilistic Databases Probabilistic Databases

Автор: Christoph Koch

Год издания: 0000

Probabilistic Transmission System Planning Probabilistic Transmission System Planning

Автор: Wenyuan Li

Год издания: 

The book is composed of 12 chapters and three appendices, and can be divided into four parts. The first part includes Chapters 2 to 7, which discuss the concepts, models, methods and data in probabilistic transmission planning. The second part, Chapters 8 to 11, addresses four essential issues in probabilistic transmission planning applications using actual utility systems as examples. Chapter 12, as the third part, focuses on a special issue, i.e. how to deal with uncertainty of data in probabilistic transmission planning. The fourth part consists of three appendices, which provide the basic knowledge in mathematics for probabilistic planning.

Probabilistic Reliability Models Probabilistic Reliability Models

Автор: Igor Ushakov A.

Год издания: 

Practical Approaches to Reliability Theory in Cutting-Edge Applications Probabilistic Reliability Models helps readers understand and properly use statistical methods and optimal resource allocation to solve engineering problems. The author supplies engineers with a deeper understanding of mathematical models while also equipping mathematically oriented readers with a fundamental knowledge of the engineeringrelated applications at the center of model building. The book showcases the use of probability theory and mathematical statistics to solve common, real-world reliability problems. Following an introduction to the topic, subsequent chapters explore key systems and models including: • Unrecoverable objects and recoverable systems • Methods of direct enumeration • Markov models and heuristic models • Performance effectiveness • Time redundancy • System survivability • Aging units and their related systems • Multistate systems Detailed case studies illustrate the relevance of the discussed methods to real-world technical projects including software failure avalanches, gas pipelines with underground storage, and intercontinental ballistic missile (ICBM) control systems. Numerical examples and detailed explanations accompany each topic, and exercises throughout allow readers to test their comprehension of the presented material. Probabilistic Reliability Models is an excellent book for statistics, engineering, and operations research courses on applied probability at the upper-undergraduate and graduate levels. The book is also a valuable reference for professionals and researchers working in industry who would like a mathematical review of reliability models and the relevant applications.

Probabilistic Search for Tracking Targets. Theory and Modern Applications Probabilistic Search for Tracking Targets. Theory and Modern Applications

Автор: Kagan Eugene

Год издания: 

Presents a probabilistic and information-theoretic framework for a search for static or moving targets in discrete time and space. Probabilistic Search for Tracking Targets uses an information-theoretic scheme to present a unified approach for known search methods to allow the development of new algorithms of search. The book addresses search methods under different constraints and assumptions, such as search uncertainty under incomplete information, probabilistic search scheme, observation errors, group testing, search games, distribution of search efforts, single and multiple targets and search agents, as well as online or offline search schemes. The proposed approach is associated with path planning techniques, optimal search algorithms, Markov decision models, decision trees, stochastic local search, artificial intelligence and heuristic information-seeking methods. Furthermore, this book presents novel methods of search for static and moving targets along with practical algorithms of partitioning and search and screening. Probabilistic Search for Tracking Targets includes complete material for undergraduate and graduate courses in modern applications of probabilistic search, decision-making and group testing, and provides several directions for further research in the search theory. The authors: Provide a generalized information-theoretic approach to the problem of real-time search for both static and moving targets over a discrete space. Present a theoretical framework, which covers known information-theoretic algorithms of search, and forms a basis for development and analysis of different algorithms of search over probabilistic space. Use numerous examples of group testing, search and path planning algorithms to illustrate direct implementation in the form of running routines. Consider a relation of the suggested approach with known search theories and methods such as search and screening theory, search games, Markov decision process models of search, data mining methods, coding theory and decision trees. Discuss relevant search applications, such as quality-control search for nonconforming units in a batch or a military search for a hidden target. Provide an accompanying website featuring the algorithms discussed throughout the book, along with practical implementations procedures.

Accounting and Auditing Research and Databases Accounting and Auditing Research and Databases

Автор: Thomas R. Weirich

Год издания: 

The easy-to-use, do-it-yourself desk accounting and auditing research database FASB's online GAAP Codification system. The convergence of U.S. GAAP and International Financial Reporting Standards. EDGAR filing and research system. RIA Checkpoint and CCH. Accounting professionals and practitioners need to understand these research databases to reach solutions and achieve maximum results for the organization. Highlighting each pertinent database, Accounting and Auditing Research Databases shows you how to conduct research using a host of databases including RIA, CCH, AICPA's Online Library, FASB Codification, GARS, and eIFRS. Highlights each specific database Step-by-step guidance to research resources Explains how to conduct research using databases including AICPA's Online Library, FASB Codification, and eIFRS Enables you to understand accounting and auditing research to reach solutions Accounting and Auditing Research & Databases: A Practitioner's Desk Reference focuses on the practical aspects of professional accounting and auditing research with step-by-step guidance to research resources to provide you with the skills you need to improve within your organization.

Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science

Автор: Franco Taroni

Год издания: 

"This book should have a place on the bookshelf of every forensic scientist who cares about the science of evidence interpretation" Dr. Ian Evett, Principal Forensic Services Ltd, London, UK Continuing developments in science and technology mean that the amounts of information forensic scientists are able to provide for criminal investigations is ever increasing. The commensurate increase in complexity creates difficulties for scientists and lawyers with regard to evaluation and interpretation, notably with respect to issues of inference and decision. Probability theory, implemented through graphical methods, and specifically Bayesian networks, provides powerful methods to deal with this complexity. Extensions of these methods to elements of decision theory provide further support and assistance to the judicial system. Bayesian Networks for Probabilistic Inference and Decision Analysis in Forensic Science provides a unique and comprehensive introduction to the use of Bayesian decision networks for the evaluation and interpretation of scientific findings in forensic science, and for the support of decision-makers in their scientific and legal tasks. • Includes self-contained introductions to probability and decision theory. • Develops the characteristics of Bayesian networks, object-oriented Bayesian networks and their extension to decision models. • Features implementation of the methodology with reference to commercial and academically available software. • Presents standard networks and their extensions that can be easily implemented and that can assist in the reader’s own analysis of real cases. • Provides a technique for structuring problems and organizing data based on methods and principles of scientific reasoning. • Contains a method for the construction of coherent and defensible arguments for the analysis and evaluation of scientific findings and for decisions based on them. • Is written in a lucid style, suitable for forensic scientists and lawyers with minimal mathematical background. • Includes a foreword by Ian Evett. The clear and accessible style of this second edition makes this book ideal for all forensic scientists, applied statisticians and graduate students wishing to evaluate forensic findings from the perspective of probability and decision analysis. It will also appeal to lawyers and other scientists and professionals interested in the evaluation and interpretation of forensic findings, including decision making based on scientific information.